
A GSoC 2013 Proposal

Enhancing Giri:
Dynamic Slicing in LLVM
Mingliang Liu, Tsinghua University

D
ynamic program slicing has been used
in many applications. Giri was a re-
search project from UIUC, which im-

plemented the dynamic backward slicing in
LLVM. I think it’s a good idea to extend this
project in several ways: 1) Update the code
to LLVM mainline and make it robust, 2) Im-
prove the performance of giri run-time, 3) Re-
duce the trace size, etc.

Background

Program slice contains all statements in a program
that directly or indirectly act the value of a variable
occurrence [14], the criteria of which is a pair of
statement and variables. We can further narrow the
notion of slice, which contains statements that influ-
ence the value of a variable occurrence for special
program inputs. This is referred as dynamic pro-
gram slicing [1]. It works on a single execution and
outputs the executed statements (traces) relevant to
the slicing criterion.

There are many applications that use (or could
benefit from) dynamic slicing, both by research and
industry organizations (e.g. Microsoft, IBM). For
example, it’s long been used in software debugging
model [2, 5] and testing [3]. Sahoo et. al. from UIUC
use dynamic program slicing to generate likely invari-
ants for automated software fault localization [10].
Differential slicing [6] was a joint work by UC Berke-
ley, IMDEA Software Institute and CMU. It uses
dynamic slicing to establish the sequence of value dif-
ferences that affect the target, which can help them

identifying causal execution differences for security
applications. Gupta et. al. from the University of
Arizona employed dynamic program slicing to narrow
down the search for faulty code [4]. Our group from
Tsinghua University would benefit from dynamic
slicing in automatically finding manual configura-
tion errors [15] in software deployment (see below).
Recently, researchers from National University of Sin-
gapore and Microsoft used dynamic slicing to debug
evolving programs [8]. Dennis Jeffrey from Google
built a system for debugging via online tracing and
dynamic slicing with other guys from university [7].
Researchers from IBM Research[9] who work on fault
localization for data-centric programs, split the trace
into multiple slices by applying dynamic slicing.

Motivation

There are two projects public available which imple-
ment the program slicing in LLVM. LLVMSlicer [11]
implementation is a static backwards slicer from
Masaryk University. It works on the well defined
data and control flow equations in a white paper
by F. Tip [13]. Giri was a research project from
UIUC, which implemented the static and dynamic
backward slicing. It also maps LLVM IR statements
to source-level statements for its output using the
debug metadata. The developers of Giri are active in
LLVM community and willing to release their code. I
think improving the Giri dynamic slicing code would
be a good idea under their kind direction.

Our goal is to release the Giri code as a sub-project
of LLVM. As far as I know, there is no public avail-

Page 1 of 3



able dynamic slicing tool in GCC or Open64. We
choose LLVM because its scalar variables are kept
in well-defined static single assignment (SSA) form,
making definition-use chains explicit. As to the tool
chain of Giri code, they currently link the Giri passes
into libLTO and run on the whole program bitcode
before libLTO generates native code. This can also
ensure that each instrumented instruction gets its
own unique ID.

Plan

There are several things I can do for Giri in this
summer of code.

1. Updating the code to LLVM mainline and
putting it into the giri SVN repository

2. Reducing the trace size. Giri currently records
the execution of each basic block, load and store,
call, and return instruction. There are things
I can do to make the trace smaller (e.g., creat-
ing one trace record for control-equivalent basic
blocks).

3. Making the giri run-time library thread safe and
the slicing thread/process aware. Right now, I
think the events of all processes and threads get
thrown together in one trace file. Each should
have a separate trace file, or trace records should
indicate which thread is performing a particular
operation.

4. Improving support to correctly handle asyn-
chronous events (e.g., signal handlers).

5. Improving the giri run-time performance. The
current run-time library mmaps a portion of the
trace file into memory, writes trace records into
it, and then synchronously munmaps it and then
maps in the next portion of the trace file. This
design ensures that we don’t swamp memory
(the application can produce trace records faster
than the OS can write them to disk), but it
doesn’t overlap computation with I/O very well.
The run-time also has a static size for how many
trace records to hold in memory before flushing
to disk; this value should be computed dynami-
cally.

6. Handling external library calls which is not com-
plete for some calls.

Table 1: Plan of the project

Work Weeks

Make Giri up to date 1

Profile the code 1

Make run-time library thread safe 2

Handle asynchronous events 2

Reduce trace size 2

Improve the giri rum-time performance 3

Improve source code generating 1

Scrub code, write tests 1

About Me

I’d like to introduce myself briefly. I’m a three-years
PhD candidate student from Tsinghua University,
China. My research area covers performance analysis,
compiler techniques for high performance computing,
and parallel computing (MPI/OpenMP).

One of my on-going work is to generate an I/O
benchmark from the original application. The base
observation is that the computation and communi-
cation statements can be deleted if they’re irrelevant
to the I/O pattern, e.g. computing the buffer con-
tent to be written into a file. We take use of the
program slicing technique to find relevant/irrelevant
statements. The static slicer was borrowed from
LLVMSlicer and I wrote code to make it work for
our application. We generated the line number of
sliced code. There is a very simple source code gener-
ation script using ugly and tricky regular expressions
to delete original source code according to the sliced
line number. We’re going to submit the first version
of the paper recently.

I also took part in one project in Open64 compiler
several year ago, the purpose of which is to fast collect
the communication trace. We used program slicing
to delete the computation statements and kept the
communication related statements. We generated
executable binaries instead of source code from IR.

Now we plan to do a project that can automati-
cally find manual configuration errors [15] in software
deployment. The dynamic slicing can help a lot since
the input is the key factor to locate errors. We have
not a concrete plan for this project, but the dynamic
slicing is heavily needed. Our long-term plan is to
add more features, e.g. Objective-C/C++ support,
thing slicing [12].

My email is liuml07@gmail.com. My homepage is

Page 2 of 3

liuml07@gmail.com


at http://pacman.cs.tsinghua.edu.cn/˜liuml07

References

[1] H AGRAWAL. Dynamic Program Slicing. In
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI),
1990.

[2] Hiralal Agrawal, Richard A Demillo, and Eu-
gene H Spafford. Debugging with dynamic slic-
ing and backtracking. Software: Practice and
Experience, 23(6):589–616, 1993.

[3] Hiralal Agrawal, Joseph R Horgan, Edward W
Krauser, and Saul A London. Incremental re-
gression testing. In Software Maintenance, 1993.
CSM-93, Proceedings., Conference on, pages
348–357. IEEE, 1993.

[4] Neelam Gupta, Haifeng He, Xiangyu Zhang,
and Rajiv Gupta. Locating faulty code using
failure-inducing chops. In Proceedings of the
20th IEEE/ACM international Conference on
Automated software engineering, ASE ’05, pages
263–272, New York, NY, USA, 2005. ACM.

[5] Tibor Gyimóthy, Árpád Beszédes, and István
Forgács. An efficient relevant slicing
method for debugging. In Software Engi-
neeringESEC/FSE99, pages 303–321. Springer,
1999.

[6] Noah M Johnson, Juan Caballero, Kevin Zhijie
Chen, Stephen McCamant, Pongsin Poosankam,
Daniel Reynaud, and Dawn Song. Differential
slicing: Identifying causal execution differences
for security applications. In Security and Pri-
vacy (SP), 2011 IEEE Symposium on, pages
347–362. IEEE, 2011.

[7] Vijay Nagarajan, Dennis Jeffrey, Rajiv Gupta,
and Neelam Gupta. A system for debugging via
online tracing and dynamic slicing. Software:
Practice and Experience, 42(8):995–1014, 2012.

[8] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang,
and Kapil Vaswani. Darwin: An approach to de-
bugging evolving programs. ACM Trans. Softw.
Eng. Methodol., 21(3):19:1–19:29, July 2012.

[9] Diptikalyan Saha, Mangala Gowri Nanda,
Pankaj Dhoolia, V. Krishna Nandivada, Vibha
Sinha, and Satish Chandra. Fault localization
for data-centric programs. In Proceedings of the

19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of soft-
ware engineering, ESEC/FSE ’11, pages 157–
167, New York, NY, USA, 2011. ACM.

[10] Swarup Kumar Sahoo, John Criswell, Chase
Geigle, and Vikram Adve. Using likely invari-
ants for automated software fault localization.
In Proceedings of the eighteenth international
conference on Architectural support for program-
ming languages and operating systems, ASPLOS
’13, pages 139–152, New York, NY, USA, 2013.
ACM.

[11] Jiri Slaby. Static Slicer for LLVM. https://

github.com/jirislaby/LLVMSlicer, 2013.

[12] M. Sridharan, S.J. Fink, and R. Bodik. Thin slic-
ing. In Proceedings of the ACM SIGPLAN con-
ference on Programming Language Design and
Implementation, volume 10 of PLDI’07, pages
112–122, 2007.

[13] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121–
189, 1995.

[14] M. Weiser. Program slicing. In Proceedings of
the 5th International Conference on Software
Engineering, ICSE, pages 439–449. IEEE, 1981.

[15] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan
Zhou, Lakshmi N Bairavasundaram, and
Shankar Pasupathy. An Empirical Study on
Configuration Errors in Commercial and Open
Source Systems. In SOSP. ACM, 2011.

Page 3 of 3

http://pacman.cs.tsinghua.edu.cn/~liuml07
https://github.com/jirislaby/LLVMSlicer
https://github.com/jirislaby/LLVMSlicer

