
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Spindle: Informed Memory Access Monitoring
Haojie Wang, Tsinghua University, Qatar Computing Research Institute;

Jidong Zhai, Tsinghua University; Xiongchao Tang, Tsinghua University, Qatar Computing
Research Institute; Bowen Yu, Tsinghua University; Xiaosong Ma, Qatar Computing Research

Institute; Wenguang Chen, Tsinghua University

https://www.usenix.org/conference/atc18/presentation/wang-haojie

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

Spindle: Informed Memory Access Monitoring

Haojie Wang∗†, Jidong Zhai∗, Xiongchao Tang∗†, Bowen Yu∗, Xiaosong Ma†, Wenguang Chen∗

Abstract
Memory monitoring is of critical use in understanding
applications and evaluating systems. Due to the dynamic
nature in programs’ memory accesses, common practice
today leaves large amounts of address examination and
data recording at runtime, at the cost of substantial per-
formance overhead (and large storage time/space con-
sumption if memory traces are collected).

Recognizing the memory access patterns available at
compile time and redundancy in runtime checks, we pro-
pose a novel memory access monitoring and analysis
framework, Spindle. Unlike methods delaying all checks
to runtime or performing task-specific optimization at
compile time, Spindle performs common static analy-
sis to identify predictable memory access patterns into
a compact program structure summary. Custom mem-
ory monitoring tools can then be developed on top of
Spindle, leveraging the structural information extracted
to dramatically reduce the amount of instrumentation
that incurs heavy runtime memory address examina-
tion or recording. We implement Spindle in the popu-
lar LLVM compiler, supporting both single-thread and
multi-threaded programs. Our evaluation demonstrated
the effectiveness of two Spindle-based tools, perform-
ing memory bug detection and trace collection respec-
tively, with a variety of programs. Results show that
these tools are able to aggressively prune online mem-
ory monitoring processing, fulfilling desired tasks with
performance overhead significantly reduced (2.54× on
average for memory bug detection and over 200× on av-
erage for access tracing, over state-of-the-art solutions).

1 Introduction
Memory access behavior is crucial to understand ap-

plications and evaluate systems. They are widely mon-
∗Department of Computer Science and Technology, Tsinghua
University {wanghaoj15, txc13, yubw15}@mails.tsinghua.edu.cn,
{zhaijidong, cwg}@mail.tsinghua.edu.cn
†Qatar Computing Research Institute, HBKU {whaojie, txiongchao,
xma}@qf.org.qa

itored in system and architecture research, for memory
bug or race condition detection [21, 27, 31], informa-
tion flow tracking [16, 30], large-scale system optimiza-
tion [35, 36, 42], and memory system design [14, 17, 20].

Memory access monitoring and tracing need to obtain
and check/record memory addresses visited by a pro-
gram and this process is quite expensive. Even given
complete source-level information, much of the relevant
information regarding locations to be accessed at runtime
is not available at compile time. For example, it is com-
mon that during static analysis, we see a heap object ac-
cessed repeately in a loop, but does not have any of the
parameters needed to perform our desired examination
or tracing: where the object is allocated, how large it is,
or how many iterations there are in a particular execution
of the loop. As a result, existing memory checking tools
mostly delay the checking/transcribing of such memory
addresses to execution time, with associated instructions
instrumented to perform task-specific processing. Such
runtime processing brings substantial performance over-
head (typically bringing 2× or more application slow-
down [5, 33] for online memory access checking and
much higher for memory trace collection [6, 22, 26]).

However, there are important information not well
utilized at compile time. Even with actual locations,
sizes, branch taken decisions, or loop iteration counts un-
known, we still see patterns in memory accesses. In par-
ticular, accesses to large objects are not isolated events
that have to be verified or recorded individually at run-
time. Instead, they form groups with highly similar (of-
ten identical) behaviors and relative displacement in lo-
cations visited given plainly in the code. The processing
tasks that are delayed to execution time often perform the
same checking or recording on individual members of
such large groups of highly homogeneous accesses. In
addition, the memory access patterns recognizable dur-
ing static analysis summarize common structural infor-
mation useful to many memory checking/tracing tasks.

Based on these observations, we propose Spindle,

USENIX Association 2018 USENIX Annual Technical Conference 561

a new platform that facilitates hybrid static+dynamic
analysis for efficient memory monitoring. It leverages
common static analysis to identify from the target pro-
gram the source of redundancy in runtime memory ad-
dress examination. By summarizing groups of mem-
ory accesses with statically identified program struc-
tures, such compact intermediate analysis results can be
passed to Spindle-based tools, to further perform task-
specific analysis and code instrumentation. The reg-
ular/predictable patterns contained in Spindle-distilled
structural information allow diverse types of memory ac-
cess checking more efficiently: by computing rather than
collecting memory accesses whenever possible, even
when certain examination has to be conducted at runtime,
it can be elevated from instruction to object granularity,
with the amount of instrumentation dramatically pruned.

We implement Spindle on top of the open-source
LLVM compiler infrastructure [10]. On top of it, we im-
plement two proof-of-concept custom tools, a memory
bug detector (S-Detector) and a memory trace collector
(S-Tracer), that leverage the common structural informa-
tion extracted by Spindle to optimize their specific mem-
ory access monitoring tasks.

We evaluated Spindle and the aforementioned custom
tools with popular benchmarks (NPB, SPEC CPU2006,
Graph500, and PARSEC) and open-source applications
covering areas such as machine learning, key-value store,
and text processing. Results show that S-Detector can
reduce the amount of instrumentation by 64% on aver-
age using Spindle static analysis results, allowing run-
time overhead reduction of up to 30.25× (2.54× on av-
erage) over the Google AddressSanitizer [33]. S-Tracer,
meanwhile, reduces the trace collection time overhead
by up to over 500× (228× on average) over the polular
PIN tool [22], and cuts the trace storage space overhead
by up to over 10000× (248× on average).

Spindle is publicly available at https://github.
com/thu-pacman/Spindle.

2 Overview
2.1 Spindle Framework

Spindle is designed as a hybrid memory monitoring
framework. Its main module performs static analysis to
extract program structures relevant to memory accesses.
Such structural information allows Spindle to obtain reg-
ular or predictable patterns in memory accesses. Differ-
ent Spindle-based tools utilize these patterns in different
ways, with the common goal of reducing the amount of
instrumentation that leads to costly runtime check or in-
formation collection.

Figure 1 gives the overall structure of Spindle, along
with sample memory monitoring tools implemented on
top of it. To use Spindle-based tools, end-users only
have to compile their application source code with the

So
u

rc
e

C
o

d
e

Instrumented Code 1

Sp
in

d
le

Control Flow
Analysis

Dependence
Analysis

In
te

r-
P

ro
ce

d
u

ra
l

A
n

al
ys

is

Build Program
Call Graph(PCG)

In
tr

a-
P

ro
ce

d
u

ra
l

A
n

al
ys

is

Inter-procedural
Analysis Algorithm

Dynamic Trace

Tr
ac

es

Static Trace

Runtime Trace Collecting Lib

ExecuteR
u

n
ti

m
e

S-
Tr

ac
er Tracer Specific Analyzer

and Instrumentation

S-
D

et
ec

to
r

Bug Detector
Specific Analyzer

and Instrumentation

Instrumented Code 2

Runtime Bug
Detecting Lib

ExecuteR
u

n
ti

m
e

Bug Report

Other
Spindle
Based
Tools

Memory Access Skeleton (MAS)

Figure 1: Spindle overview

Spindle-enhanced LLVM modules, whose output then
goes through tool-specific analysis and instrumentation.
More specifically, the common static analysis performed
by Spindle will generate a highly compact Memory
Access Skeleton (MAS), describing the structured, pre-
dictable memory access components.

Spindle tool developers write their own analyzer,
which uses MAS to optimize their code instrumentation,
aggressively pruning unnecessary or redundant runtime
checks or monitoring data collection. In general, such
task-specific tools enable computing groups of memory
addresses visited before or after program executions, to
avoid examining individual memory accesses at runtime.
As illustrated in Figure 1, each of such Spindle-based
tools (the memory bug detector S-Detector and memory
trace collector S-Tracer in this case) will generate its own
instrumented application code. As our results will show,
for typical applications, the majority of memory accesses
are computable given a small amount of runtime infor-
mation, leading to dramatic reduction of instrumentation
and runtime collection.

End-users then execute their tool-instrumented appli-
cations, with again task-specific runtime libraries linked.
The instrumented code conducts runtime processing to
perform the desired form of memory access monitoring,
such as bug or race condition detection, security check,
or memory trace collection. The runtime libraries cap-
ture dynamic information to fill in parameters (such as
the starting address of an array or the actual iteration
count of a loop) to instantiate the Spindle MAS and com-
plete the memory monitoring tasks. In addition, all the
“unpredictable” memory access components, identified
by Spindle at compile time as input-dependent, are mon-
itored/recorded in the traditional manner.

Spindle’s static analysis workflow to produce MAS is
further divided into multiple stages, performing intra-
procedural analysis, inter-procedural analysis, as well
as tool specific analysis and instrumentation. During

562 2018 USENIX Annual Technical Conference USENIX Association

https://github.com/thu-pacman/Spindle
https://github.com/thu-pacman/Spindle

the intra-procedural stage, Spindle analyzes the program
control flow graph and finds out the dependence among
memory access instructions. The dependence check-
ing is then expanded across functions in inter-procedural
analysis.

One limitation of the current Spindle framework is that
it requires source level information of target programs.
As this work is a proof-of-concept study, also consid-
ering the current trend of open-source software adop-
tion [9, 41], our evaluation uses applications with source
code available. Spindle can potentially work without
source code though: it starts with LLVM IR and can
therefore employ open-source tools such as Fcd [7] or
McSema [37] to translate binary codes into IR. In our fu-
ture work we are however more interested in direct static
analysis, performing tasks such as loop and dependency
detection on binaries.

2.2 Sample Input/Output: Memory Trace
Collector

1 void BubbleSort(int *A, int N){
2 for (int i = 0; i < N; ++i){
3 for (int j = i+1; j < N; ++j){
4 bool flag = (A[i] > A[j]);
5 if (flag) {
6 Swap(A, i, j);
7 }}}}
8

9 void Swap(int *S, int i, int j) {
10 int tmp = S[i];
11 S[i] = S[j];
12 S[j] = tmp;
13 }

Figure 2: Sample bubble sort program

Function BubbleSort(dyn_A, dyn_N) {
Loop0: L0, 0, dyn_N, 1 {
Loop1: L1, L0, dyn_N, 1 {
Load1: dyn_A+L0; Load2: dyn_A+L1;
Branch: dyn_flag {
Call Swap(dyn_A, L0, L1);

}}}}
Function Swap(S, i, j) {
Load3 : S+i; Load4 : S+j;
Store1: S+i; Store2: S+j;
}

Static Trace

BubbleSort {
dyn_A:
0x7fffdfc58320;
dyn_N:
10;
dyn_flag:
{0,0,1,1,0,...,1,1};

}

Dynamic Trace

Figure 3: Memory traces of the bubble sort program

We take S-Tracer, our Spindle-based trace collector, as
an example to give a more concrete picture of Spindle’s
working. Suppose the application to be monitored is the
bubble sort program listed in Figure 2. S-Tracer’s output,
given in Figure 3, is a complete yet compressed memory
access trace, consisting of its MAS (coupled with corre-
sponding dynamic parameters) and dynamic traces col-
lected in the conventional manner.

In the static trace, we list out the structure of the pro-
gram, including the control flow, the memory accesses
pattern and the call graph. There are information items
that cannot be determined during static analysis, such as

the base address of array A and its size N, which is also
the final value of loop induction variables i and j , as
well as the value of flag, which is data-dependent and
determines the control flow of this program. The “Instru-
mented code 1” shown in Figure 1 records these missing
values at executing time, which compose the dynamic
trace shown on the right.

This new trace format, though slightly more com-
plex than traditionally traces, is often orders of magni-
tude smaller. A straightforward post-processor can eas-
ily take S-Tracer traces and restore the traditional full
traces. More practically, an S-Tracer trace driver per-
forming similar decompression can be prepended to typ-
ical memory trace consumers, to enable fast replay with-
out involving large trace files or slow I/O.

3 Static Analysis
3.1 Intra-procedural Analysis

During this first step, Spindle extracts a program’s per-
function control structure to identify memory accesses
whose traces can be computed and hence can be (mostly)
skipped in dynamic instrumentation.

3.1.1 Extracting Program Control Structure
A program’s memory access patterns (or the lack

thereof) are closely associated to its control flows. It
is not surprising that it shares a similar structure with
the program’s control flow graph (CFG). Therefore we
call this graph M-CFG. Unlike traditional control flow
graphs, M-CFG records only instructions containing
memory references (rather than the entire basic block),
program control structures (loops and branches), and
function calls. For loops and branches, we need to record
related variables, such as loop boundaries and branch
conditions.

Flag

Call Swap

End Loop 1

End Loop 0
True

False

Load 1

M-CFG of BubbleSort

Loop 0

Loop 1

Load 2

Figure 4: The M-CFG for the function BubbleSort

With M-CFG, memory access instructions are embed-
ded within program basic control structures, as illus-
trated in Figure 4 for the aforementioned BubbleSort
function (Figure 2). Here the M-CFG records a nested
loop containing two memory accesses and a branch with
a function call. Subsection 3.1.2 discusses dependence
analysis regarding memory access instructions and iden-
tification of computable memory accesses, while Sec-
tion 3.2 discusses as handling of function calls.

3.1.2 Building Memory Dependence Trees
In Spindle, we classify all memory accesses into either

computable or non-computable types. The computable

USENIX Association 2018 USENIX Annual Technical Conference 563

accesses can have traces computed based on the static
trace, with the help of little or no dynamic information;
the non-computable ones, on the other hand, need to fall
back to traditional instrumentation and runtime tracing.

For such classification, we build a memory depen-
dence tree for each memory access instruction. It records
data dependence between a specific memory access in-
struction and its related variables. The tree is rooted at
the memory address accessed, with non-leaf nodes de-
noting operators between variables such as addition or
multiplication and leaf nodes denoting variables in the
program. Edges hence intuitively denote dependence.

Below we list the types of leaf nodes in memory de-
pendence trees:
• Constant value: value determined at compile time
• Base memory address: start address for continu-

ously allocated memory region (such as an array),
with value acquired at compile time for global or
static variables, and at runtime for dynamically al-
located variables.
• Function parameter: value determined at either

compile time or runtime (see Section 3.2)
• Data-dependent variable: value dependent on data

not predictable at compile time – to be collected at
runtime
• Function return value: value collected at runtime
• Loop induction variable: variable regularly updated

at each loop iteration, value determined at compile
time or runtime

Algorithm 1 Algorithm of building memory dependence
tree
1: input: A worklist WL[A]. Predefined Leaf types: Type
2: output: memory dependence tree: T (A)
3: Insert a root note r to T (A)
4: while WL[A] 6= φ do
5: Remove an item v1 from WL[A]
6: if v1 /∈ Type then
7: for v2 ∈UD(v1) do
8: if v2 ∈ Type then
9: Insert a leaf node v2

10: Insert an edge from v1 to v2
11: else
12: Insert an operator node in v2 to T (A)
13: Add all variables used in v2 to WL[A]
14: else
15: Insert a leaf node v1 to v1 to T (A)
16: Insert an edge from r to v1 to T (A)
17: return T (A)

The memory dependence tree is built by performing
a backward data flow analysis at compile time. Specif-
ically, for each memory access, we start from the vari-
able storing this memory address and traverse its use-
define data structure, which describes the relation be-
tween the definition and use of each variable, to identify
all the variables and operators affecting it. This traversal

is an iterative process that stops when all the leaf nodes
are categorized into one of the types listed above. We
give the worklist algorithm (Algorithm 1) that performs
such backward data flow analysis with, where we repeat-
edly variables storing memory addresses into the work-
list WL(A) and iteratively find all the related variables
through the use-define structure UD(v), till the worklist
becomes empty.

%prom = sext i32 %i.0 to i64
%array.1 = getelementptr i32* %A, i64 %prom
%0 = load i32* %array.1

%array.1

%i.0

+

*

sext

%S

4

Load 1

Figure 5: Sample memory dependence tree
Figure 5 shows a group of instructions (generated from

the source code in Figure 2) and the memory dependence
tree corresponding to the variable %array.1 in the last
line. Here getelementptr is an instruction that cal-
culates the address of an aggregate data structure (where
an addition operation is implied) and does not access
memory. We omit certain arguments for this instruction
for simplicity. sext performs type casting. As to the
leaf nodes, %A is an array base address, 4 is a constant
value, and %i.0 is a loop induction variable.

Such a dependence tree allows us to approach the cen-
tral task of Spindle: computable memory access iden-
tification. This is done by analyzing the types of the
leaf nodes in the memory dependence tree. Intuitively,
a memory access is computable if the leaf nodes of its
dependence tree are either constants (trivial) or loop in-
duction variables (computable by replicating computa-
tion performed in the original program using initial plus
final values, collected at compile time or runtime). The
M-CFG and the memory access dependence trees, pre-
serving control flows, data dependencies, and operations
to facilitate such replication, can be viewed as a form
of program pruning that only retains computation rele-
vant to memory address calculation. By replacing each
memory instruction of the M-CFG with its dependence
tree, we obtain a single graph representing main mem-
ory access patterns for a single function. Note that such
dependence analysis naturally handles aliases.

3.2 Inter-procedural Analysis
At the end of the intra-procedural analysis, we have

a memory dependence tree for every memory access
within each function. Below we describe how Spindle
analyzes memory address dependence across functions.

The core idea here is to propagate function arguments
plus their dependence from the caller to the callee, and
replace all the function parameters of the dependence
trees in the callee with actual parameters. For this, we

564 2018 USENIX Annual Technical Conference USENIX Association

first build a program call graph (PCG), on which we
subsequently perform top-down inter-procedural analy-
sis. Algorithm 2 gives the detailed process.

Algorithm 2 The algorithm of inter-procedural analysis
1: input: The dependence trees for each procedure p
2: input: The program call graph (PCG)
3: Change← True
4: /* Top-Down inter-procedural analysis */
5: while (Change == True) do
6: Change← False
7: for all procedure p in Pre-Order over PCG do
8: for all dependence trees d in p do
9: if A leaf node l of d is a function’s parameter then

10: Replace l with its actual parameter
11: Change← True

%array.1

%i.0

+

*

sext

%S

4

%array.1

%L0

+

*

sext

%S

4%A

%i.0

Figure 6: Transformation of dependence tree

Figure 6 illustrates the transformation a dependence
tree in function Swap (Figure 2) undergoes during inter-
procedural analysis. After intra-procedural analysis, the
dependence tree for the load instruction Load3 of func-
tion Swap has two leaf nodes that are function parame-
ters, which cannot be analyzed then as the variables %S
and %i.0 are undetermined. Within inter-procedural
analysis, these two nodes are replaced with their ac-
tual parameters, a base address %A and a loop induc-
tion variable %i.0 Now the dependence tree rooted at
%array.1 is computable.

For function calls forming a loop in PCG, such as re-
cursive calls, currently we do not perform parameter re-
placement for any function in this loop during our inter-
procedural analysis, as when these functions terminate is
typically data-dependent.

3.3 Special Cases and Complications
Index arrays If a memory dependence tree has data-
dependent variables as its leaf nodes, normally we con-
sider it non-computable. However, we still have chance
to extract regular patterns. Index array is an important
case of such data-dependent variables, storing “links” to
other data structures, as explained below.

1 for (j=0; j<i; j++){
2 for (k=0; k<m; k++)
3 sum += delta * z[colidx[k]]
4 //colidx is index array to z
5 r[k] = d
6 }

Figure 7: NPB CG code with index array colidx

Figure 7 gives a simplified version of a code snippet
from NPB CG [2], where the array z is repeatedly ac-
cessed via the index array colidx, which cannot be de-
termined at compile time. However, we find that in many
programs (including here) the index array itself is not
modified across multiple iterations of accesses. There-
fore, there is still significant room for finding repeated
access patterns and removing redundancy.

To this end, Spindle performs the following extra eval-
uation during its static analysis. First, it compares the
size of index array and its total access count. If the latter
is larger, we only need to record the content of the in-
dex array and compute the memory accesses accordingly
rather than instrumenting them at runtime. Such evalua-
tion needs to be repeated if the content of this index array
is changed, of course. This is the case with the example
given in Figure 7, where the total memory access count
for the index array colidx is i*m and greater than the
size of colidx. Thus at runtime we only need to record
its content at the beginning of this nested loop and the
base address of array z. Combining such information
and memory dependence tree, we can compute all the
memory access locations.
Multi-threaded programs The discussion so far has
been focused on analyzing single-thread programs.
However, Spindle’s methodology can also be easily ap-
plied to multi-threaded applications. Spindle is thread-
safe and we perform the same static analysis as for
single-thread programs, except that we also mark the
point where a new thread is created and record relevant
parameter values. With parallel executions, during dy-
namic memory monitoring (discussed in the next sec-
tion), the current thread ID would be easily fetched along
with information such as loop iteration count and branch
taken, which allows us to distinguish runtime informa-
tion collected by different threads. Note that certain tech-
niques need to be augmented to handle multi-threaded
executions. E.g., the array index technique (Section 3.3)
needs to be protected by additional check, as an array
could be modified by another thread.

Again, with addresses or values that cannot be de-
termined at compile time, such as shared objects or
branches affected by other threads, we fall back to run-
time instrumentation. So typical SPMD codes will share
the same static MAS, to be supplemented by per-thread
or even per-process runtime information, making Spin-
dle even more appealing in efficiency and scalability. If
significant amount of output is generated, such as with
memory trace collection, Spindle allows users to have
the option to look at a single-thread’s memory accesses
or correlating accesses from all threads (though trace in-
terleaving is a separate topic that requires further study.)

For example, with pthread, Spindle instruments
pthread create to record where a new thread is cre-

USENIX Association 2018 USENIX Annual Technical Conference 565

ated. During multi-threaded execution, the appropriate
thread ID is recorded for each function. Thus we know
which thread the dynamic information collected by Spin-
dle belongs to, therefore can apply per-thread static anal-
ysis, similar to that in single-thread executions.

4 Spindle-based Runtime Monitoring
This section illustrates how Spindle’s static analysis

results can be used to reduce runtime instrumentation.
We first describe common runtime information to be ob-
tained through instrumentation, then present two samples
of Spindle-based tool design, for memory bug detection
and memory trace collection, respectively.

4.1 Runtime information collection
During program runs, Spindle’s static memory access

skeleton is supplemented by information not available at
compile time. Generally, three cases require instrumen-
tation: control structures, input-dependent variables, and
non-computable memory accesses:
Control structures Spindle needs to record the initial
values of all the loop induction variables and the loop
iteration count if they are unknown at compilation time.
Moreover, for a loop with multiple exit points, we need to
instrument each exit point to track where the loop exits.
Similarly, for conditional branches in MAS, we need to
record their taken statuses to track taken paths.
Input dependent variables For input dependent vari-
ables, runtime information is necessary but certain static
analysis can indeed reduce runtime overhead. For in-
stance, the address of a dynamically allocated memory
region can be obtained at runtime by collecting actual
values. An optimization in Spindle is that we do not in-
strument every instruction that references input depen-
dent variables, but only where they are defined, initial-
ized, or updated. E.g., for a global variable needed by
the analysis, it leverages static analysis to only record its
initial value at the beginning of the program, and then
again upon its updates.
Non-computable memory accesses For non-
computable memory accesses (as mentioned in
Subsection 3.1.2), we fall back to conventional dy-
namic monitoring/instrumentation.

%array.1

%L0: 0,N,1

+

*

sext

%S

4%A

%i.0

void *BubbleSort(int *A, int N) {

for (int i = 0; i < N; ++i) {
for (int j = i+1; j < N; ++j) {

bool flag = (A[i] > A[j]);

if (flag) {
Swap(A, i, j);

}}}}

recordAddr(A, variable_id);

recordLoop(N, loop_id);

recordPath(flag, path_id);

Dependence tree for %array.1 Instrumented Bubblesort code segment

Figure 8: Sample runtime information collection

Figure 8 shows an example of runtime information

collection for the BubbleSort routine discussed ear-
lier in Section 2.2. The left side gives the dependence
tree of the variable %array.1 in function Swap, where
undetermined address %A and loop L0’s induction vari-
able %N need to be collected at runtime. Note that L0’s
initial index value (0) and increment (1) can be deter-
mined at compile time. The right side lists the instru-
mented BubbleSort code. Here Spindle automati-
cally instruments three memory accesses by inserting the
highlighted statements (for A, N, and the branch related
flag, which falls out of the dependence tree shown).
variable id, loop id, and path id are also auto-
matically generated by Spindle for its runtime library to
find the appropriate static structures.

4.2 Spindle-based tool developing
Spindle’s performs automatic code instrumentation for

runtime information collection, based on its static analy-
sis. To build a memory monitoring tool on top of Spin-
dle, users only need to supply additional codes using its
API to perform custom analysis, as to be illustrated be-
low. Our two sample tools, S-Detector and S-Tracer,
each takes under 500 lines of code to implement both
compile-time analysis and runtime library.

4.2.1 Memory Bug Detector (S-Detector)
Memory bugs, such as buffer overflow, use after free,

and use before initialization, may cause severe run-
time errors or failures, especially with programming lan-
guages like C and C++. There have been a series of
tools, software- or hardware-based, developed to de-
tect memory bugs at compile-time or runtime. Among
them, Memchecker [39] uses hardware support for mem-
ory access monitoring and debugging and is therefore
fast (only 2.7% performance overhead for SPECCPU
2000). Such special-purpose hardware is nevertheless
not yet adopted by general processors. ARCHER [43]
relies on static analysis only, so is faced with the difficult
trade-off between accuracy (false positives) and sound-
ness (false negatives), like other static tools. A recent,
state-of-the-art tool is AddressSanitizer (ASan) [33], an
industrial-strength memory bug detection tool developed
by Google and now built into the LLVM compiler. ASan
inserts memory checking instructions (such as out-of-
bound array accesses) into programs at compile time,
then uses shadow memory [25] for fast runtime check-
ing. Despite well implemented and highly tuned, ASan
still introduces 2–3× slowdown to SPEC programs.

In this work, we present S-Detector, a memory bug de-
tector that leverages Spindle-gathered static information
to eliminate unnecessary instrumentation to facilitate ef-
ficient online memory checking. Our proof-of-concept
implementation of S-Detector can currently detect in-
valid accesses (e.g., out-of-bound array access and use

566 2018 USENIX Annual Technical Conference USENIX Association

after free) and memory leaks (dynamically allocated ob-
jects remaining unfreed upon program termination).

With Spindle’s MAS, S-Detector is aware of a pro-
gram’s groups of memory accesses and therefore able to
perform checking at a coarser granule. E.g., with dy-
namically allocated arrays, even when neither the start-
ing address (base) or size (bound) is known at compile
time, its accesses are given as relative to these two val-
ues and can therefore be checked for out-of-bound bugs
at compile time. With existing tools like ASan, however,
such checks are delayed till runtime and repeated at ev-
ery memory acesses.

Therefore, S-Detector performs aggressive memory
check pruning by proactively conducting compile-time
access analysis and replacing instruction-level checks
by object-level ones. Only for accesses labeled ”non-
computable” by Spindle, S-Detector falls back to tradi-
tional instrumentation. Below, we illustrate S-Detector’s
memory check pruning with two sample scenarios, both
contained in the same code snippet from SPEC CPU2006
mcf (Figure 9).

1 while (pos - 1 && red_cost >
2 (cost_t)new[pos/2-1].flow){
3 new[pos-1].tail = new[pos/2-1].tail;
4 new[pos-1].head = new[pos/2-1].head;
5 // Three more accesses to struct members
6 // of new[pos-1] and new[pos/2-1].
7 pos = pos/2;
8 new[pos-1].tail = tail;
9 // Four more accesses to struct members

10 // of new[pos-1].
11 }

Figure 9: Sample code from SPEC CPU 2006 mcf

In-structure accesses This sample code references
an array of structures (new), issuing multiple ac-
cesses to members of its elements. In this case,
assisted with Spindle-extracted MAS, all access tar-
gets can be represented as addr = struct base
+ constant offset. Once S-Detector finds that
the constant offset is valid for this struct, i.e.,
offset<struct size, it only needs to determine
if this structure element itself is valid at runtime, i.e.,
the memory range [struct base, struct base
+ struct size) is a valid range. This groups
the per-member access checks to per-element checks
(validating structure elements like new[pos-1] and
new[pox/2-1]) and significantly reduces the amount
of instrumentation.
In-loop accesses Given the while loop in the same
sample code, Spindle records the following information
for its loop induction variable pos: its initial and final
values (denoted here as pos init and pos final),
as well as the operation used to update it across iterations
(divided by 2 at Line 7). Based on the MAS, S-Detector
can easily infer the offset range of array new’s access to

be within [pos end/2-1, pos init-1]. In addition,
it records array new’s size in bytes (new size) and the
size of new’s elements (struct size). Aside from
quick checks to ensure that the object has been allocated
and not freed yet, S-Detector verifies that
(pos init−1)∗struct size< new size (1)

and
pos end/2−1≥ 0 (2)

Actually inequality (2) is guaranteed by the loop’s exit
condition, so S-Detector only needs to check (1). Even
when none of these four parameter values is available at
compile time, S-Detector only needs to perform a one-
time, object-level check at runtime, for array object ac-
cesses within this while loop.

Combining the structure- and loop-level pruning
described above, S-Detector can eliminate all per-
instruction memory checks on accesses of the new ob-
ject in the sample code, performing at most one single
run-time check instead.

4.2.2 Memory Trace Collector (S-Tracer)
Complete, detailed memory access traces allow di-

verse analysis and faithful benchmarking or simulation
tests. However, their colletion is expensive, both in time
and space. Existing tools like PIN [22], Valgrind [26],
and DynamoRIO [6] produce memory trace output of
daunting sizes, due to the high frequency of memory ac-
cesses in typical program executions. It is common for
several seconds’ execution to generate hundreds of GBs,
sometimes even over one TB, of memory traces using
any of the existing tools. Large memory trace size not
only introduces large overhead for underlying trace stor-
age and various trace-based analysis tools, but also af-
fects the performance of the original programs. For ex-
ample, PIN introduces an average slowdown of 38× for
SPEC INT programs to perform memory analysis [38].
In addition, large traces bring back the I/O bottleneck
during replay time, slowing down trace-driven simula-
tions. Such limitations make it less and less practical for
existing memory tracing tools to measure significant por-
tions of modern data-intensive applications.

We present S-Tracer, a memory trace collection tool
based on Spindle. With the static information that pro-
vided by Spindle, S-Tracer can generate highly com-
pressed memory access traces with much lower runtime
overhead than traditional tracing tools using dynamic in-
strumentation. At runtime, S-Tracer couples the Spindle-
extracted MAS with dynamically collected information
mentioned earlier in this section. The result would be a
pair of static and dynamic traces, as illustrated in Fig-
ure 2 and Figure 3.

Our discussion below focuses on specific challenges
due to the limitation of using LLVM IR, where we
propose several techniques to generate approximate but
fairly accurate traces.

USENIX Association 2018 USENIX Annual Technical Conference 567

Register spilling Since Spindle performs its static anal-
ysis in the LLVM IR level, where local scalar variables
are usually represented as register variables, it is diffi-
cult for our approach to capture the stack memory ac-
cesses caused by register spilling in the final binary code.
Considering the small footprint of register variables even
with spilling, we implement typical register allocators
used in the compiler backend for Spindle at the IR level,
to calculate register spilling. Based on our experiments,
our approach is able to achieve the similar statistical be-
havior of stack accesses as by traditional tracing tools.
Implicit memory accesses with function calls Func-
tion calls can also generate stack memory operations, not
explicitly described in IR and hence not captured by our
intra- and inter-procedural analysis. There are two cat-
egories of such accesses. For the caller, it has to write
into stack the return address, the contents of registers to
be used, and function parameters (with x86 64, the first 6
parameters are put in registers while the others in stack).
For the callee, upon returning it has to read from stack the
return address of the caller, the content of register EBP
(for 32-bit systems) or RBP (for 64-bit systems), and the
content of saved registers. To handle this, we again write
a simple simulator to generate these memory accesses.
Dynamically linked libraries Since Spindle performs
source code analysis, for calls to functions in dynami-
cally linked libraries, we cannot capture their memory
accesses in the IR level and have to fall back again to tra-
ditional dynamic instrumentation. As an optimization,
we adopt a hybrid approach, by using dynamic instru-
mentation to collect the relative memory traces within
such functions, along with their base stack addresses
within the dynamic library. When a program calls such
a function, we can then calculate new memory accesses
based on the new base stack address.

5 Evaluation
In this section, we demonstrate the effectiveness of

Spindle with the aforementioned two sample tools built
on top of its static analysis framework: S-Detector for
online memory bug detection and S-Tracer for full mem-
ory access trace collection.

We compare S-Detector with the state-of-the-art mem-
ory bug detector, ASan [33] by Google. In our exper-
iments, S-Detector and ASan do the same checks: use
after free, heap buffer overflow, stack buffer overflow,
global buffer overflow, and memory leaks. Note that
ASan does support additional checks (use after return,
use after scope, and initialization order bugs), which
need to be explicitly enabled by certain compiler options.
Our tests used the default compiler options and we per-
formed extra verification to confirm that these additional
checks were disabled in all of our ASan experiments.

For S-Tracer, we show that it produces orders of mag-

nitude smaller trace output, and thus lower overhead, by
omitting redundant information. To validate its correct-
ness, we also compare its decompressed trace with trace
generated by PIN, a widely used dynamic tool.

5.1 Experiment Setup
Test platform We evaluate Spindle on a server with In-
tel Xeon E7-8890 v3 processors (running CentOS 7.1),
128GB of DDR3 memory, and 1TB SATA-2 hard disk.
For memory bug detection, the tests use mandatory op-
tions to enable ASan and DrMem. For memory trace
collection, we record each memory access in a 16-byte
entry, 8 bytes for memory address and another 8 bytes
for access type (read/write) and access size.
Test programs Currently, Spindle fully supports C
and partially supports C++ and Fortran. For memory
bug detection, we follow the practice of previously
published tools and use 11 C programs from SPEC CPU
2006 [1]: 400.perlbench, 401.bzip2, 403.gcc,
429.mcf, 433.milc, 445.gobmk, 456.hmmer,
458.sjeng, 464.h264ref, 470.lbm, and
482.sphinx3. The program 998.specrand is
omitted as it has too few memory accesses. Using these
common test programs, we not only can compare the
tools’ runtime overhead, but also their effectiveness of
capturing known bugs.

For memory trace collection, we use the popular NPB
parallel benchmark suite [2] as codes with mostly regular
memory accesses, plus SPEC 429.mcf as a memory-
intensive, non-numerical program. We also sample from
modern data-intensive and irregular datacenter applica-
tions: (1) the Breadth First Search (BFS) component of
the Graph500 Benchmark [11], a representative graph
application with input-dependent memory accesses, (2)
a convolutional neural network for digit recognition
(MNIST) [29], (3) kissdb, a key-value store [18],
and (4) Fido, a lightweight, modular machine learn-
ing library [8]. Finally, for multi-threaded applications,
we test 3 programs from the PARSEC suite [4] cover-
ing different application domains: streamcluster
(stream processing), freqmine (data mining), and
blackscholes (PDE solving), plus one MapRe-
duce [23]-style program performing word count, de-
noted as SC, FM, BS and WC respectively.

5.2 Spindle Compilation Overhead
Before we get to the tool use cases, we first assess

the extra overhead brought by Spindle’s static analysis.
Table 1 summarizes this compilation overhead for eval-
uated programs, as well as their original compilation
time and code size. In general, the Spindle compilation
overhead only composes a small fraction of the original
LLVM compilation cost (2% to 35%, average at 10%).
We consider such one-time static analysis overhead neg-

568 2018 USENIX Annual Technical Conference USENIX Association

ligible, considering the significant savings in the much
larger runtime checking/tracing cost.

Table 1: Spindle compilation overhead
Program Extra Original Code size Program Extra Original Code size
BT 0.260s 4.170s 232KB perlbench 4.662s 23.036s 4418KB
CG 0.084s 0.651s 35KB bzip2 0.053s 2.828s 239KB
EP 0.043s 0.493s 10KB gcc 1.596s 66.729s 13777KB
FT 0.098s 0.908s 40KB mcf 0.028s 0.694s 62KB
IS 0.049s 0.427s 25KB milc 0.360s 3.899s 458KB
LU 0.225s 3.260s 244KB gobmk 1.444s 16.921s 239KB
MG 0.161s 0.984s 43KB hmmer 0.924s 8.773s 1126KB
SP 0.228s 2.320s 164KB sjeng 0.270s 2.521s 298KB
BFS 0.704s 4.142s 852KB h264ref 2.556s 15.268s 1656KB
MNIST 0.399s 1.138s 4KB lbm 0.076s 0.906s 44KB
kissdb 0.092s 1.835s 16KB sphinx3 0.304s 5.106s 767KB
FM 0.535s 7.760s 112KB Fido 1.051s 9.287s 160KB
SC 0.159s 3.407s 80KB BS 0.068s 2.250s 15KB
WC 0.054s 1.324s 19KB

5.3 S-Detector for Memory bug detection
S-Detector runtime overhead We compare S-Detector
with two popular memory bug detection tools: Google’s
AddressSanitizer (ASan) [33] and DynamoRIO [6]-
based Dr. Memory (DrMem) [5]. To examine the bene-
fits of instrumentation pruning based on Spindle’s static
analysis, we test two versions of S-Detector: SD-All, a
baseline version that instruments all memory accesses,
and SD-Opt, after check pruning.

On bug detection results, S-Detector captures most of
the common SPEC bugs reported by DrMem and ASan,
plus additional memory leaks (dynamically allocated ob-
jects not freed by program termination) that are verified
by our manual code examination.

Figure 10 shows the runtime overhead of ASan, SD-
All and SD-Opt, in percentage of the original program
execution time. As DrMem is much heavier than oth-
ers (for most programs over 10× slowdown), we omit its
results from the figure for clarity. ASan is an industrial-
strength tool, whose streamlined implementation deliv-
ers lower overhead than SD-All (geometric mean of over-
head at 66% by the former vs. 184% by the latter),
both with similar amount of instrumentation. SD-Opt,
however, overcomes its slower checking implementation
and brings down runtime overhead to geometric mean
of 26%. Except for two out of 11 cases (bzip2 and
h264ref), SD-Opt reduces overhead from ASan, by up
to 30.25× (sphinx3). We give more detailed discus-
sion of these special cases later.
Spindle-enabled instrumentation pruning To take a
closer look, we examine the amount of checks avoided
by Spindle’s static analysis. Figure 11 gives the percent-
age of eliminated memory checks, from SD-All to SD-
Opt. On average, Spindle enables S-Detector to cut run-
time memory checks by 64%, lowering its performance
overhead consequently. The check and overhead reduc-
tion level depends on several factors, such as the amount
of irregular/unpredictable memory accesses (Amdahl’s
Law), the overall intensiveness of memory accesses, and

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

445.gobmk

456.hmmer

458.sje
ng

464.h264ref

470.lb
m

482.sp
hinx3

GEOMEAN
0%

50%

100%

150%

200%

250%

300%

P
e
rf

o
rm

a
n
ce

 O
v
e
rh

e
a
d SD-All ASan SD-Opt

Figure 10: Overhead comparison (bars over 300% truncated)

control flow behavior. Below we give more detailed re-
sults and analysis via several case studies.

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

445.gobmk

456.hmmer

458.sje
ng

464.h264ref

470.lb
m

482.sp
hinx3

AVERAGE
0%

20%

40%

60%

80%

100%

A
v
o
id

e
d
 C

h
e
ck

s

Figure 11: Reduction in runtime memory checks

lbm, hmmer, milc: These are the best cases among
tested. Function-level profiling shows that the vast ma-
jority of their execution time and most of their memory
accesses are spent within loops, where Spindle analy-
sis allows S-Detector to apply the loop-level check pre-
sented in Section 4.2.1, replacing the per-access checks
performed by ASan and DrMem. As a result, these three
programs have 99%, 97%, and 91% of memory checks
removed by S-Detector, respectively. Such instrumenta-
tion pruning then lowers S-Detector’s runtime overhead,
e.g., to 5% for hmmer, vs. ASan’s 107%.
gcc: this compiler program is inherently input-
dependent and as a result, has the lowest reduction by S-
Detector in memory checks (19%). Interestingly, though
its execution does spend most time within Spindle-
identified loop structures, most of its loops are found
to run only a few iterations, limiting the benefit of S-
Detector’s loop-level static checks. However, in this case
even SD-All is faster than ASan. Follow-up measure-
ments reveal that S-Detector’s shadow memory imple-
mentation, though less efficient in general, offers better
spatial locality than ASan’s. With gcc accessed mem-
ory areas being particularly spread out, ASan’s runtime
check harms its locality, bringing the LLC miss rate from
the original 1.3% to 5.9%, while S-Detector retains the
original caching performance.
bzip2: this compression/decompression program is
also input-dependent. Profiling reveals a performance
hot-spot in sorting, with many branches whose taken sta-
tus relies on input data. Even with 32% of runtime mem-
ory checks pruned, the less efficient instrumentation of

USENIX Association 2018 USENIX Annual Technical Conference 569

S-Detector brought overall higher overhead than ASan,
158% vs. 62%.

Despite such worst cases, the overall strong perfor-
mance of S-Detector indicates that its Spindle-based
static analysis, if adopted by highly-tuned, mature tools
like ASan, may lead to even lower runtime overhead.

5.4 S-Tracer for Memory Trace Collection
Result Trace Verification Next, we evaluate S-Tracer,
comparing it with the widely used PIN tool [22] for
memory tracing. We first validate the correctness of its
memory trace generation. Note that Spindle is based on
compile-time instrumentation while traditional tools like
PIN use runtime instrumentation. The two systems run
application programs within different frameworks, each
with different components (such as dynamic libraries),
which may in turn alter the absolute locations of mem-
ory objects. Therefore, one would not expect them to
generate identical trace sequences.

Recognizing such limitations, we first check the out-
put trace size. We compare the size of PIN’s trace with
full traces recovered from Spindle’s output, in the same
format. The Spindle recovered trace has the similar vol-
ume to PIN’s, with relative difference between 0.5% and
6% (median at 3.2%). Additional examination reveals
that such discrepancies stem from the aforementioned
inaccuracy caused by Spindle’s approximation of stack
accesses and register spilling. Though amounting for up
to a few percent of the overall trace entries, affected ac-
cesses are typically localized to a very small footprint
and hardly impact the overall memory access behavior.

We then validate the Spindle-generated heap mem-
ory access sequence. We examine trace fidelity by per-
forming more detailed trace alignment and checking dif-
ference in heap access sequences. For each access on
heap, we break it into a pair: (object, offset), since
for each execution the dynamically allocated object’s
base is different but the offset remains constant. We
use Linux diff tool to compare S-Detector’s heap
trace and PIN’s and find that overall, S-Tracer generates
heap traces close to PIN’s (relative difference ratio be-
tween 0.0% and 4.7%, median at 1.5%).

In the worst case, S-Tracer could generate an over-
all 5.9% difference in total trace size and 4.7% differ-
ence ratio on heap accesses, mostly attributed to stack
accesses (more influenced by register allocation) and reg-
ister spilling. Below we test this worst case, BFS, using
a cache simulator, to (1) demonstrate a use case of our
fast and large-capacity memory tracing and (2) provide a
validation for trace fidelity. The test uses a simple trace-
driven tool that simulates an 8-way set-associative cache
with 64-byte cache line, and two replacement algorithms
(LRU and FIFO). We validate simulation results using
S-Tracer traces against that using PIN’s, at varied cache

sizes (including typical L2 and LLC sizes). Figure 12
shows that S-Tracer output achieves almost identical out-
come as the PIN trace in miss ratio, across different com-
binations of cache size and replacement strategies.

 0

 5

 10

 15

 20

 25

F32K
F256K

F1M
F4M

L32K
L256K

L1M
L4M

M
is

s
 R

a
te

(%
) PIN

S-Tracer

Figure 12: The cache miss rate of BFS in a trace-driven
simulator. F means FIFO algorithm, L means LRU algo-
rithm. The size means the cache size we simulate.

Trace Size Reduction Next we assess S-Tracer’s gain
in tracing time/space efficiency. Figure 13 shows a com-
parison of the trace size generated by S-Tracer and PIN,
in log scale, for 13 single-thread and 4 multi-threaded
programs. Truncated bars are from programs whose PIN
traces exceed our 1TB storage capacity (BT, EP, LU, SP
of Class A). For S-Tracer, the trace size includes both the
static and dynamic components.

 0.01

 0.1

 1

 10

 100

 1000

BT CG EP FT IS LU MG SP BFS
MCF

MNIST

kissdb

Fido
FM SC BS W

C

T
ra

c
e

 S
iz

e
 (

G
B

)

single-thread multi-threaded

PIN S-Tracer

Figure 13: Trace size comparison

As expected, S-Tracer achieves orders of magnitude
reduction in trace size from the PIN baseline. For pro-
grams dominated by regular memory accesses, like most
of the programs in NPB benchmark, MNIST, kissdb,
streamcluster, and wordcount, it reduces trace
size by more than 100×. For the four NPB benchmarks
where PIN exceeds the 1TB storage space, S-Tracer gen-
erates traces sized at 85MB-1.71GB. Even for the less
regular programs, such as BFS and freqmine, Spin-
dle brings considerable trace size reduction. In the worst
case (IS, integer sorting), a 6.93× reduction is achieved.

We also evaluated compressing PIN’s trace with a
naive alternative, gzip, which ended up producing or-
ders of magnitude larger traces than S-Tracer does. Be-
sides, generating then compressing traces is much more
expensive than Spindle-based approach, online or offline.
Runtime Tracing Overhead Reduction To evaluate the
runtime overhead of trace collection, Figure 14 shows the
slowdown factor (left axis, in log scale), calculated by
dividing the execution time with tracing by the original
time, for S-Tracer and PIN.

As expected, the online overhead difference is dra-
matic. In the 13 programs that PIN can complete trac-
ing (full trace size under 1TB disk space), the average
slowdown is 502× (and up to over 2000×), while S-

570 2018 USENIX Annual Technical Conference USENIX Association

 1

 10

 100

 1000

BT CG EP FT IS LU MG SP BFS
MCF

MNIST

kissdb

Fido
FM SC BS W

C
 1

 10

 100

S
lo

w
d

o
w

n
 F

a
c
to

r

S
p

e
e

d
u

p
 t

o
 P

IN

single-thread multi-threaded

PIN S-Tracer SpeedUp

Figure 14: Application slowdown by S-Tracer and PIN
with I/O (left) and S-Tracer speedup over PIN (right)

Tracer brings that of 6.5× on average (and up to 35.2×),
making full trace collection/storage much more afford-
able. Across the applications, S-Tracer reduces slow-
down from PIN by a factor of 61× on average.

Though we do not have space to show the no-I/O re-
sults, the savings there are still significant. For the 17
test programs, PIN introduces an average slowdown of
70.1× (and up to 384×), while S-Tracer brings that of
4.5× on average (and up to 33×). Across the applica-
tions, S-Tracer reduces slowdown from PIN by a factor
of 17.9× on average. The reason is that Spindle allows S-
Tracer to perform far less dynamic instrumentation, and
an application’s relative time overhead is highly corre-
lated to its dynamic trace generation rate.

6 Related Work
Using Static Analysis to Assist Runtime Checking
This group of work is closest to Spindle in approach. In
particular, GreenArray [24] is an LLVM-based tool that
analyzes the value range of index variables as well as the
boundary of memory regions at compile time, to elimi-
nate unnecessary runtime memory check. Spindle is dif-
ferent in that (1) its static analysis performs much more
than inferring variables’ value range, allowing complete
computation of their value by iteration and full trace col-
lection, and (2) the static skeleton it produces enables
more types of and much more aggressive pruning in run-
time checking, judging by reported GreenArray perfor-
mance relative to AddressSanitizer.

Abstract Execution (AE) [19] produces a target-event-
specific program slice, to be coupled by a “schema com-
piler” with runtime collected information and executed
again for analysis or trace collection. Spindle, instead,
records static trace at compile time, which is directly uti-
lized during the target programs (production) execution.

On utilizing static information to assist trace col-
lection, Cypress [44] uses hybrid static-dynamic anal-
ysis for parallel programs’ communication trace com-
pression. There are also techniques that perform
static binary rewriting/instrumentation [32] or regular-
expression-based memory access pattern construction
for memory layout transformation [15]. However, none
of these approaches is able to gather enough static struc-
trual information to enable versatile runtime monitor-

ing/tracing as Spindle does.
Also, logical connectives proposed for relational anal-

yses between input and output memory states [13] may
be used by Spindle to further reduce instrumentation.
Monitoring/Tracing overhead reduction Prior work
has explored reducing monitoring or tracing overhead in
other ways. MemTrace [28] performs lightweight mem-
ory tracing of unmodified binary applications by trans-
lating 32-bit codes to 64-bit codes, which is fast but lim-
its its application to running 32-bit programs on 64-bit
machines. Among sampling-based methods, Vetter [40]
evaluates techniques for analyzing communication activ-
ity in large-scale distributed applications. RACEZ [34]
uses hardware performance monitoring units to sam-
ple memory accesses at runtime, and then uses the col-
lected memory access trace for offline data-race detec-
tion. However, such low-overhead methods lose impor-
tant information, such as temporal order of operations, or
miss detection targets.

Finally, Bao et al. [3, 12] adopt a DIMM-snooping
hardware mechanism to collect virtual memory reference
traces. This hardware solution indeed minimizes collec-
tion overhead, but is rather costly and only catches mem-
ory accesses missed by on-chip caches.

7 Conclusion and Future Work
This paper presents Spindle, a versatile memory mon-

itoring framework that performs detailed static analysis
to extract program structures, allowing different types of
static and dynamic techniques to compute rather than col-
lect memory accesses whenever possible. Our develop-
ment and experiments confirm that there are abundant
redundancy and regularity in memory accesses, even
for applications perceived as more irregular and data-
dependent. By identifying predictable memory access
behaviors at compile time and supplementing statically
obtained memory access skeletons with runtime infor-
mation, we can dramatically reduce the amount of online
checking (for purposes like bug or race detection) or data
collection (for purposes like memory access pattern anal-
ysis or memory tracing).

Acknowledgment
We thank all reviewers for their insightful comments

and our shepherd Samira Khan for her timely guidance.
We also thank colleagues from both the Tsinghua Uni-
versity PACMAN group and the QCRI Distributed Sys-
tems group, for their valuable feedback and suggestions.
This work is supported in part by the National Key
R&D Program of China (Grant No. 2017YFA0604500),
National Natural Science Foundation of China (Grant
No. 61722208, 61472201), Tsinghua University Initia-
tive Scientific Research Program (20151080407). Jidong
Zhai is the corresponding author of this paper.

USENIX Association 2018 USENIX Annual Technical Conference 571

References

[1] SPEC CPU 2006. https://www.spec.org/
cpu2006/.

[2] D. Bailey, T. Harris, W. Saphir, R. V. D. Wijngaart,
A. Woo, and M. Yarrow. The NAS Parallel Benchmarks
2.0. NAS Systems Division, NASA Ames Research Cen-
ter, Moffett Field, CA, 1995.

[3] Yungang Bao, Mingyu Chen, Yuan Ruan, Li Liu, Jian-
ping Fan, Qingbo Yuan, Bo Song, and Jianwei Xu.
Hmtt: A platform independent full-system memory trace
monitoring system. In Proceedings of the 2008 ACM
SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’08,
pages 229–240. ACM, 2008.

[4] The PARSEC benchmark. http://parsec.cs.
princeton.edu/.

[5] Derek Bruening and Qin Zhao. Practical memory check-
ing with dr. memory. In Proceedings of the IEEE/ACM
International Symposium on Code Generation and Opti-
mization, pages 213–223, Los Alamitos, CA, USA, 2011.

[6] Derek L Bruening. Efficient, transparent, and compre-
hensive runtime code manipulation. PhD thesis, Mas-
sachusetts Institute of Technology, 2004.

[7] The fcd tool. https://github.com/zneak/
fcd/.

[8] The fido library. http://fidoproject.github.
io/.

[9] Brian Fitzgerald, Jay P Kesan, Barbara Russo, Maha
Shaikh, and Giancarlo Succi. Adopting Open Source Soft-
ware. MIT Press, 2011.

[10] The LLVM Compiler Framework. http://llvm.
org.

[11] Graph500. http://www.graph500.org/.

[12] Yongbing Huang, Licheng Chen, Zehan Cui, Yuan Ruan,
Yungang Bao, Mingyu Chen, and Ninghui Sun. Hmtt:
A hybrid hardware/software tracing system for bridging
the dram access trace’s semantic gap. ACM Trans. Archit.
Code Optim., 11(1):7:1–7:25, 2014.

[13] Hugo Illous, Matthieu Lemerre, and Xavier Rival. A re-
lational shape abstract domain. In NASA Formal Methods
Symposium, pages 212–229. Springer, 2017.

[14] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari
Makineni, Don Newell, Yan Solihin, Lisa Hsu, and Steve
Reinhardt. Qos policies and architecture for cache/mem-
ory in cmp platforms. In SIGMETRICS’07, pages 25–36.
ACM, 2007.

[15] Jinseong Jeon, Keoncheol Shin, and Hwansoo Han. Lay-
out transformations for heap objects using static access
patterns. In Proceedings of the 16th International Confer-
ence on Compiler Construction, CC’07, pages 187–201,
2007.

[16] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook
Jee, and Angelos D Keromytis. libdft: Practical dynamic
data flow tracking for commodity systems. In ACM SIG-
PLAN Notices, volume 47, pages 121–132. ACM, 2012.

[17] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-
Balter. Thread cluster memory scheduling: Exploiting
differences in memory access behavior. In Micro, pages
65–76, 2010.

[18] The kissdb program. https://github.com/
adamierymenko/kissdb.git.

[19] J. R. Larus. Abstract execution: A technique for effi-
ciently tracing programs. Software Practice Experience,
20(12):1241–1258, November 1990.

[20] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu
Chen, and Chengyong Wu. A software memory partition
approach for eliminating bank-level interference in mul-
ticore systems. In PACT’12, pages 367–376. ACM, 2012.

[21] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou.
Avio: Detecting atomicity violations via access interleav-
ing invariants. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, pages 37–
48. ACM, 2006.

[22] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instru-
mentation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI ’05, pages 190–200. ACM, 2005.

[23] The mapreduce program. https://github.com/
sysprog21/mapreduce.git.

[24] Henrique Nazaré, Izabela Maffra, Willer Santos,
Leonardo Barbosa, Laure Gonnord, and Fernando Magno
Quintão Pereira. Validation of memory accesses through
symbolic analyses. In ACM SIGPLAN Notices, vol-
ume 49, pages 791–809. ACM, 2014.

[25] Nicholas Nethercote and Julian Seward. How to shadow
every byte of memory used by a program. In Proceed-
ings of the 3rd International Conference on Virtual Exe-
cution Environments, VEE ’07, pages 65–74, New York,
NY, USA, 2007. ACM.

[26] Nicholas Nethercote and Julian Seward. Valgrind: A
framework for heavyweight dynamic binary instrumenta-
tion. In Proceedings of the 28th ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation, PLDI ’07, pages 89–100. ACM, 2007.

572 2018 USENIX Annual Technical Conference USENIX Association

https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
http://parsec.cs.princeton.edu/
http://parsec.cs.princeton.edu/
https://github.com/zneak/fcd/
https://github.com/zneak/fcd/
http://fidoproject.github.io/
http://fidoproject.github.io/
http://llvm.org
http://llvm.org
http://www.graph500.org/
https://github.com/adamierymenko/kissdb.git
https://github.com/adamierymenko/kissdb.git
https://github.com/sysprog21/mapreduce.git
https://github.com/sysprog21/mapreduce.git

[27] Soyeon Park, Shan Lu, and Yuanyuan Zhou. Ctrig-
ger: Exposing atomicity violation bugs from their hiding
places. In ASPLOS, pages 25–36. ACM, 2009.

[28] Mathias Payer, Enrico Kravina, and Thomas R Gross.
Lightweight memory tracing. In USENIX Annual Tech-
nical Conference, pages 115–126, 2013.

[29] The CNN program. https://github.com/
preimmortal/CNN.git.

[30] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim,
Yuanyuan Zhou, and Youfeng Wu. Lift: A low-overhead
practical information flow tracking system for detecting
security attacks. In ACM Sigplan Notices, pages 245–
258. ACM, 2009.

[31] Paruj Ratanaworabhan, Martin Burtscher, Darko
Kirovski, Benjamin Zorn, Rahul Nagpal, and Karthik
Pattabiraman. Detecting and tolerating asymmetric races.
In Proceedings of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’09, pages 173–184. ACM, 2009.

[32] Amitabha Roy, Steven Hand, and Tim Harris. Hybrid
binary rewriting for memory access instrumentation. In
Proceedings of the 7th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments,
VEE ’11, pages 227–238. ACM, 2011.

[33] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker. In USENIX Annual Techni-
cal Conference, pages 309–318, 2012.

[34] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, and
Robert Hundt. Racez: A lightweight and non-invasive
race detection tool for production applications. In ICSE,
pages 401–410, 2011.

[35] Timothy Sherwood, Erez Perelman, Greg Hamerly, and
Brad Calder. Automatically characterizing large scale
program behavior. pages 45–57, 2002.

[36] Allan Snavely, Laura Carrington, Nicole Wolter, Jesus
Labarta, Rosa Badia, and Avi Purkayastha. A framework
for performance modeling and prediction. In SC, pages
1–17, 2002.

[37] The McSema tool. https://github.com/
trailofbits/mcsema/.

[38] Gang-Ryung Uh, Robert Cohn, Bharadwaj Yadavalli,
Ramesh Peri, and Ravi Ayyagari. Analyzing dynamic
binary instrumentation overhead. In WBIA Workshop at
ASPLOS, 2006.

[39] Guru Venkataramani, Brandyn Roemer, Yan Solihin,
and Milos Prvulovic. Memtracker: Efficient and pro-
grammable support for memory access monitoring and
debugging. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium
on, pages 273–284. IEEE, 2007.

[40] Jeffrey Vetter. Dynamic statistical profiling of commu-
nication activity in distributed applications. In Proceed-
ings of the 2002 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS ’02, pages 240–250. ACM, 2002.

[41] Georg Von Krogh and Eric Von Hippel. The promise of
research on open source software. Management science,
52(7):975–983, 2006.

[42] Shasha Wen, Milind Chabbi, and Xu Liu. Redspy: Ex-
ploring value locality in software. In ASPLOS, pages 47–
61. ACM, 2017.

[43] Yichen Xie, Andy Chou, and Dawson Engler. Archer:
using symbolic, path-sensitive analysis to detect mem-
ory access errors. ACM SIGSOFT Software Engineering
Notes, 28(5):327–336, 2003.

[44] Jidong Zhai, Jianfei Hu, Xiongchao Tang, Xiaosong Ma,
and Wenguang Chen. Cypress: Combining static and dy-
namic analysis for top-down communication trace com-
pression. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC’14, pages 143–153, 2014.

USENIX Association 2018 USENIX Annual Technical Conference 573

https://github.com/preimmortal/CNN.git
https://github.com/preimmortal/CNN.git
https://github.com/trailofbits/mcsema/
https://github.com/trailofbits/mcsema/

