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Abstract—Architecture designers tend to integrate both CPU
and GPU on the same chip to deliver energy-efficient designs.
To effectively leverage the power of both CPUs and GPUs on
integrated architectures, researchers have recently put substantial
efforts into co-running a single application on both the CPU and
the GPU of such architectures. However, few studies have been
performed to analyze a wide range of parallel computation pat-
terns on such architectures. In this paper, we port all programs
in Rodinia benchmark suite and co-run these programs on the
integrated architecture. We find that co-running results are not
always better than running the application on the CPU only or
the GPU only. Among the 20 programs, 3 programs can benefit
from co-running, 12 programs using GPU only and 2 programs
using CPU only achieve the best performance. The remaining 3
programs show no performance preference for different devices.
We also characterize the workload and summarize the patterns
for the system insights of co-running on integrated architectures.

I. INTRODUCTION

Integrating GPUs with CPUs on the same chip is increas-
ingly common in current processor architectures. In 2011,
AMD released its integrated architecture [7], called accelerated
processing units (APUs). Subsequently, Intel also released an
integrated architecture in the processors of Ivy Bridge and
Haswell [1]. A main advantage of integrated architectures is
that both CPUs and GPUs share the same physical memory,
which can significantly reduce data transmission requirements
through PCIe bus in traditional architectures using discrete
GPUs.

To effectively leverage the power of both CPUs and GPUs
on integrated architectures, researchers have recently focused
on co-running the same application on both the CPU and
the GPU on such architectures. He et al. [8], [9] employ
an integrated architecture to optimize Hash Join, which is an
important type of operations in databases. Delorme et al. [6]
implement a parallel radix sort using an integrated architecture.
Daga et al. [5] show the promising performance of Breadth-
First Search using an integrated architecture. Chen et al. [4]
accelerate MapReduce on an integrated architecture. Different
from the co-run study in our paper, Zhu et al. [10] run different
applications simultaneously on both CPU- and GPU-integrated
architectures. However, few studies have been performed to
analyze a wide range of co-running single applications on such
architectures.

In this paper, we explore these problems through adopting a
strategy of data partition that can utilize the GPU and CPU re-
sources on integrated architectures. We focus on data-parallel
workloads. We have ported Rodinia benchmark suite [3], 20
parallel programs in total, and co-run these programs on an
integrated architecture. We rewrite these programs to enable
them to co-run on both CPUs and GPUs, and the partition
point of CPUs and GPUs can be adjusted in a flexible manner
to achieve good load balance. This is a simple yet general
approach for implementing co-running, and more optimization
through re-designing algorithms are left for future work.

The study has shed light on the future research of co-running
the application. More research and optimizations are needed
to take advantage of our workload characterization for better
performance. We make two main contributions in this work:

• We port the Rodinia benchmark suite. Among the 20
ported programs, 3 programs are co-run-friendly (the pro-
gram performance of co-running on both CPU and GPU
is the best), 12 programs are GPU dominant (the program
performance of only running on GPU is the best), 2
programs are CPU dominant (the program performance
of only running on CPU is the best), and 3 programs
show no performance preference for devices.

• We further characterize the workloads and find that the
key indicators are local memory usage, kernel execution
time, partition number, and the ratio of computation to
memory access. Finally, we provide a summary to assist
in choosing devices when using integrated architectures.

The remainder of this paper is organized as follows. Sec-
tion II reviews the integrated architecture. Section III describes
our methodology. Section IV details the experiments and sum-
marizes the characteristics. Section V provides the conclusion.

II. BACKGROUND

We focus on AMD’s integrated architecture, the A-Series
APU A10-7850K (codenamed “Kaveri [2]”). We show its
structure in Figure 1. The CPU has four cores and each core is
referred as a computing unit in OpenCL. The GPU has eight
computing units. For APUs, the GPU and CPU are on the
same die and share the same memory. The CPU and GPU
also share the same memory controller. Therefore, memory
bandwidth contention occurs. On the APU, although the CPU



and GPU are on the same chip, they still have different
memory bandwidths. The bandwidth provided for GPUs is
higher than the bandwidth provided for CPUs.
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Fig. 1. AMD integrated architecture (AMD A10-7850K)

OpenCL is an open standard computing language and uses
a context for managing objects. An OpenCL context can
associate with a number of computing devices such as CPUs
and GPUs. For each device, we need to create a separate
command queue to launch kernels. In OpenCL, each thread
is a work item, and a certain number of work items are
organized as a workgroup. A work group can run on only
one computing unit. The work items within a group can
communicate through local memory and global memory, and
they are synchronized through barrier operations. Work items
from different workgroups cannot communicate directly, and
we cannot synchronize them through barrier operations. This
flexibility allows us to separate part of workgroups to CPUs if
the original program only uses GPUs. Similar ideas are used
in [6], [8].

III. METHODOLOGY

In the integrated architecture, we distribute workloads to
both CPUs and GPUs. Most current benchmarks are designed
for CPU-only or GPU-only, and few benchmarks are for co-
run. In this study, we focus on data-parallel programs that are
written in OpenCL.

A. Implementation

To write an OpenCL program, we first need to create
a context, and create command queues within the context.
Second, we use the function clEnqueueNDRangeKernel() to
enqueue a command to execute a kernel on a device. After the
enqueue operation, we use the function clFlush() to guarantee
those OpenCL commands have been issued to the associated
CPU or GPU. Third, we use the function clWaitForEvents()
to wait for executions to complete. After the execution of the
kernel, we need to release OpenCL resources.

In our implementation, we first change the code and create
two devices and two command queues in a shared context in-
stead of one device and one command queue. Second, we im-
plement a new function, clEnqueueNDRangeKernel fusion(),
instead of the original clEnqueueNDRangeKernel() function.

cl_int clEnqueueNDRangeKernel (…, command_queue, kernel, 
global_work_size, local_work_size,…){

}

cl_int clEnqueueNDRangeKernel_fusion (…, command_queue, 
kernel, global_work_size,local_work_size,…){

//Step 1: Calculate the number of work-items for CPUs and 
GPUs and get the offset.

gpu_global_work_size = compute_gpu_global_size(…);
cpu_global_work_size = compute_cpu_global_size(…);
global_work_offset = compute_global_offset(…);

//Step 2: If the related number of work-items is not zero, 
launch the kernels for CPUs and GPUs.

if(GPU_RUN) clEnqueueNDRangeKernel (…);
if(CPU_RUN) clEnqueueNDRangeKernel (…);
if(GPU_RUN) clFlush(gpu_command_queue);
if(CPU_RUN) clFlush(cpu_command_queue);

//Step 3: Synchronization.
if(CPU_RUN)   error|=clWaitForEvents (&cpu_event);
if(GPU_RUN)   error|=clWaitForEvents (&gpu_event);

}
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Fig. 2. Replacement for clEnqueueNDRangeKernel.

Our pseudo-code is presented in Figure 2. In Step 1, we
calculate the work item numbers for CPUs and GPUs, and
their starting number. In Step 2, we launch kernels for CPUs
and GPUs. In Step 3, we use two queues and two events to
perform the synchronization. Third, we release two devices
and two queues. We define a global offset to determine the
workload proportion for CPUs and GPUs. If the global offset
is 0 or 100 %, we only execute the program on one device.
Moreover, an OpenCL program can have more than one kernel.
We select the main kernel contributing to the most fraction of
the execution time for preventing inter-kernel impact of co-
run, which facilitates characteristics analysis.

B. Workload Characterizations

We divide the tested programs into two categories: co-run
friendly and co-run unfriendly. We then subdivide the co-run
unfriendly category into three subcategories: GPU dominant,
CPU dominant, and performance similar.

Co-run-friendly programs: Co-run-friendly programs
achieve the best performance when we use GPUs and CPUs
together to process the workload.

GPU-dominant programs: GPU-dominant programs
achieve the best performance when we only use GPUs to
process the workload.

CPU-dominant programs: CPU-dominant programs
achieve the best performance when we only use CPUs to
process the workload.

Performance similar programs: Performance similar pro-
grams are programs that exhibit no preference for devices
using different proportional distributions.

We provide the classification results in Table I. To
avoid the effect of random errors, we define the thresh-
old for each category. We define the CorunIndicator and
DeviceChoosingIndicator as follows. Programs are con-
sidered co-run-friendly only when CorunIndicator is less
than 0.85. For co-run unfriendly programs, the programs
with DeviceChoosingIndicator less than -0.4 are considered



CPU-dominant, the programs with DeviceChoosingIndicator
greater than 0.4 are considered GPU-dominant, while others
are performance similar. We choose the boundary values
artificially.

CorunIndicator =
min all

min atipodes
(1)

DeviceChoosingIndicator =
tcpu 100 − tcpu 0

min atipodes
(2)

min all = min(tcpu 0, ..., tcpu 100) (3)

min atipodes = min(tcpu 0, tcpu 100) (4)

tcpu i is the time when the CPU process i% workloads.
min(tcpu i, tcpu j) is the minimum value of tcpu i and tcpu j .
min(tcpu i, ..., tcpu j) is the minimum value from tcpu i to
tcpu j . The i and j can be a number from 0 to 100.

IV. EXPERIMENTAL EVALUATION

A. Co-run Results

We evaluate the Rodinia benchmark suite [3] according to
our classification and conduct experiments on A10-7850K. We
vary the CPU workload portion from 0 to 100% at an interval
of 10%. We list the input size for each program in Table I.
We also list the name of the main kernel for each program.
Certain programs have more than one dominant function. We
then choose the kernel according to the significance in the
program. The Rodinia benchmark suite divides the running
time into different stages. For example, Leukocyte provides
six stages: device initialization, data allocation, data copy in,
kernel running, data copy out, and resource release. The kernel
running stage takes more than 90% of the time. Because we
co-run CPUs and GPUs to parallelize the kernel, we are only
concerned about the kernel stage of the programs. We refer
to the kernel stage as the computation stage because certain
programs have more than one kernel stage and contain a small
amount of data transmission between different kernels. The
co-run results are shown in Figure 3.

B. Performance Characteristics Profile

We find that the key indicators are (1) local memory usage,
(2) kernel execution time, (3) partition number (where partition
number refers to the total thread number divided by the
thread number equals the partition number on the selected
dimension), and (5) the ratio of computation to memory
access. In addition, insufficient thread number also influences
co-running results. The characteristics of the four types of
programs are given below.

1) Co-run-friendly programs (KM, HW, and GE): Co-run-
friendly programs have sufficient kernel execution time and do
not use local memory. The partition number of co-run-friendly
programs is not excessive. The program performance on GPUs
is similar to the performance on CPUs.

2) GPU-dominant programs (PF, HS, BP, LC, SRAD, SC,
CFD, PTHF, MD, BT, DWT, and LU): GPU-dominant pro-
grams usually have well-structured parallelism, which can
fully utilize GPU performance. Moreover, if the kernel time is
short or the partition number is high, which gives the CPU
limited performance space, the program is GPU-dominant.
Local memory is friendlier to GPUs than to CPUs; therefore,
programs that use local memory intensively are likely to be
GPU dominant.

3) CPU-dominant programs (NN, and MC): If programs
have low vector compute to memory ratios or the average
kernel time is low, the programs will run poorly on GPUs.
These programs will be CPU dominant.

4) Performance similar programs (NW, BFS, and HS): For
performance similar programs, programs running on GPUs
perform well but do not represent the best configuration. This
type of program typically has substantial partition numbers or
inadequate threads in a workgroup.

As an example, we show the profiling results for the KM,
which is a co-run friendly program. The average kernel time
is 24 ms that is sufficient and it does not use local memory.
The partition number is 1930 that is considered reasonable.
Moreover, the execution time for CPU only and GPU only
are 2.1 sec and 2.8 sec, which are similar.

V. CONCLUSION

In this paper, we analyze the characteristics of co-running
a single application on both the CPU and the GPU of an
integrated architecture. On AMD’s APU A10-7850K, we
demonstrate that 1) co-running a single application may not
always deliver a better performance than running it on a single
processor due to memory contention, 2) careful design and
optimizations are required for future research of co-running a
single application on the integrated architecture.
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TABLE I
EXPERIMENT INPUT.

Applications Main Kernel Input Co-run Indicator Device Choosing Indicator Type
Leukocyte (LC) IMGVF kernel testfile.avi 1.00 -40.56 GPU dominant
Heart Wall (HW) kernel gpu opencl number of frame 20 0.76 -1.56 Co-run friendly
CFD Solver (CFD) compute flux fvcorr.domn.097K 1.00 -3.31 GPU dominant
LU Decomposition (LU) lud internal s 2048 1.00 -113.34 GPU dominant
HotSpot (HS) hotspot 512 2 1000 1.00 -506.87 GPU dominant
Back Propagation (BP) bpnn adjust weights ocl 524288 1.00 -1.60 GPU dominant
Needleman-Wunsch (NW) nw kernel2 4096 10 1.00 -0.31 Performance similar
Kmeans (KM) kmeans kernel c kdd cup 0.84 -0.29 Co-run friendly
Breadth-First Search (BFS) BFS 1 graph1MW 6.txt 0.93 -0.07 Performance similar
SRAD (SRAD) srad kernel 100 0.5 502 458 1.00 -0.55 GPU dominant
Streamcluster (SC) pgain kernel 10 20 256 65536 65536 1000 1.00 -53.68 GPU dominant
Particle Filter (PF) find index kernel x 128 y 128 z 10 np 400000 0.99 -6.29 GPU dominant
Path Finder (PTHF) dynproc kernel 100000 100 20 1.00 -2217.29 GPU dominant
Gaussian Elimination (GE) Fan2 s 1024 0.79 -0.20 Co-run friendly
k-Nearest Neighbors (NN) NearestNeighbor r 5 lat 30 lng 90 1.00 5.08 CPU dominant
LavaMD (MD) kernel gpu opencl boxes1d 20 1.00 -10.85 GPU dominant
Myocyte (MC) kernel gpu opencl time 100 0.93 8.59 CPU dominant
B+ Tree (BT) findRangeK j 65536 10000 1.00 -256.43 GPU dominant
GPUDWT (DWT) cl fdwt53Kernel rgb.bmp d 1024x1024 f 5 l 3 1.00 -2.71 GPU dominant
Hybrid Sort (HS) bucketsort r 0.98 0.01 Performance similar
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Fig. 3. Execution time for the Rodinia benchmark suite. Co-run-friendly programs are (a, b, c), GPU-dominant programs are (d, e, f, g, h, i, j, k, l, m, n,
o), CPU-dominant programs are (p, q), and performance similar programs are (r, s, t).
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